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Abstract: The optical neural network (ONN) is a promising hardware platform for next-
generation neuromorphic computing due to its high parallelism, low latency, and low energy 
consumption. However, previous integrated photonic tensor cores (PTCs) consume numerous 
single-operand optical modulators for signal and weight encoding, leading to large area costs 
and high propagation loss to implement large tensor operations. This work proposes a scalable 
and efficient optical dot-product engine based on customized multi-operand photonic devices, 
namely multi-operand optical neurons (MOON). We experimentally demonstrate the utility of 
a MOON using a multi-operand-Mach-Zehnder-interferometer (MOMZI) in image recognition 
tasks. Specifically, our MOMZI-based ONN achieves a measured accuracy of 85.89% in the 
street view house number (SVHN) recognition dataset with 4-bit voltage control precision. 
Furthermore, our performance analysis reveals that a 128 × 128 MOMZI-based PTCs 
outperform their counterparts based on single-operand MZIs by one to two order-of-magnitudes 
in propagation loss, optical delay, and total device footprint, with comparable matrix 
expressivity. 

© 2023 Optica Publishing Group under the terms of the Optica Publishing Group Open Access Publishing 
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1. Introduction 
The optical neural network (ONN) is an emerging analog artificial intelligence (AI) accelerator 
that leverages properties of photons, including low latency, wide bandwidth, and high 
parallelism [1–3], to address the growing demand for computing power required to implement 
deep neural network (DNN) models. Once weight parameters are set, photonic integrated 
circuits (PICs) can perform tensor operations with near-zero energy consumption at the speed 
of light [4,5], making them an ideal platform for accelerating multiply-accumulate (MAC) 
operations [6]. However, the potential massive parallelism and ultra-high computing speed of 
ONNs are not fully unleashed with small-size photonic tensor cores (PTCs). To maximize the 
performance benefit of photonic computing in DNN acceleration, scalable and efficient 
photonic tensor core designs are in high demand. 

The scalability of previous photonic tensor core designs is bottlenecked by the large spatial 
footprint and insertion loss [7]. For instance, an MZI-based coherent PTC [8] requires 𝑂𝑂(𝑚𝑚2 +
𝑛𝑛2) single-operand MZI modulators to construct an 𝑚𝑚 × 𝑛𝑛 matrix, consuming huge area cost 
to implement large tensor operations (e.g., 128 × 128). Moreover, the large number (~2𝑛𝑛) of 
cascaded optical devices in the critical path of the circuit leads to unacceptable insertion loss. 
Even with low-loss MZIs such as thermo-optic MZIs (0.5-1 dB) [9], cascading 128 such 
devices will result in 64 to 128 dB propagation loss. In addition, single-operand-device-based 
PTCs suffer from nontrivial dynamic energy consumption to reconfigure weight parameters. 
Given the limited chip area and link budget, we have to serialize the matrix multiplication by 
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repeatedly reusing small-size photonic tensor cores, which incurs much longer latency to 
implement one matrix-vector multiplication, potentially negating the speed advantage of ONNs 
over electronic analog AI accelerators [10]. 

Both circuit- and device-level optimizations have been explored to enhance the scalability of 
ONNs. Circuit-level approaches, such as the butterfly-style circuit mesh [11], have been 
explored to reduce hardware usage [12,13]. Moreover, compact device-level photonic tensor 
cores, such as star couplers and metasurfaces [5,6], have been proposed to significantly reduce 
the device footprint and improve the hardware efficiency of tensor operations. However, one 
major challenge with compact photonic circuit mesh or passive device-level tensor cores is their 
limited matrix representability, which usually results in accuracy degradation when 
implementing complicated AI tasks. To address this challenge, we suggest using active device-
level photonic tensor cores, which offer the potential to achieve both high representability and 
high hardware efficiency. Recently there has been a trend to use multi-operand devices for 
vector operations, which shows great potential to achieve efficiency and scalable 
breakthroughs. We partition the phase shifter into multiple small segments, each being 
independently controlled. By leveraging the underlying device transfer function, we can then 
realize vector operations with nearly the same device footprint and tuning range as the single-
operand one. In this work, for the first time, we officially name this photonic structure a multi-
operand optical neuron (MOON). Prior work has proposed a microring-based MOON and 
showed its advantages over standard single-operand micro-ring in neuromorphic computing 
through simulation [14].  In this work, we introduce a new broadband device in this MOON-
family, a multi-operand MZI (MOMZI), and experimentally demonstrate its superior efficiency 
and scalability for next-generation photonic neuromorphic computing.  

In this work, we customize a MOMZI, whose modulation arm is controlled by multiple 
independent signals, and leverage its transmission to realize vector-vector dot-product. A 𝑘𝑘-
operand (𝑘𝑘-op) MOMZI can be used as a length-𝑘𝑘 vector dot-product engine, directly saving 
the device usage by a factor of 𝑘𝑘 compared to single-operand MZI arrays [8]. Note that the 
device footprint and tuning range keep constant and will not scale with 𝑘𝑘. By combing the result 
from multiple 𝑘𝑘-op MOMZIs, we can efficiently scale up to operations with a large vector 
length with near-constant insertion loss. Using devices from foundry process design kits 
(PDKs) [15], 128×128 photonic tensor cores based on our MOMZIs show a 6.2× smaller total 
device footprint, 49× lower optical delay, and >256 dB lower propagation loss than previous 
single-operand MZI arrays [8]. We experimentally demonstrated the representability and 
trainability of an ONN constructed by 4-op MOMZIs on the street view house number (SVHN) 
recognition task [16], achieving a measured accuracy of 85.89% with 4-bit voltage control 
precision. Our proposed MOMZI-based photonic tensor core enables the implementation of 
high-performance and energy-efficient neuromorphic computing with a small device footprint, 
low propagation delay, and low energy consumption.  
 

2. Multi-operand optical neurons 
A typical photonic tensor core to implement MAC operation is in Fig. 1(a), which contains 
photonic components to generate input signals, the weight matrix, and the outputs. 𝑛𝑛 high-
speed modulators are needed in an 𝑛𝑛-input, 𝑚𝑚–output layer. Depending on the weight mapping 
approach, one needs 𝑚𝑚(𝑚𝑚−1)+𝑛𝑛(𝑛𝑛−1)

2
+ max (𝑚𝑚,𝑛𝑛) [8] or 𝑚𝑚 × 𝑛𝑛  active photonic 

components [17] to implement a 𝑚𝑚 × 𝑛𝑛 weight matrix. Furthermore, ~2𝑛𝑛 active devices are 
cascaded in one optical path, resulting in nonnegligible propagation loss and requiring more 
laser power to drive the photonic neural chip. 

In this study, we propose a novel approach to reduce the optical component usage by 
implementing the multiply-accumulate (MAC) operation using an array of multi-operand-



   
 

   
 

modulator-based optical neurons (MOONs), as shown in Fig. 1(b). Depending on the area and 
reliability concerns, one MOON can be a multi-operand active photonic device of any 
waveguide structure, such as MZI modulators and microring modulators. As illustrated in Fig. 
1(c), each row of the layer is divided into 𝑛𝑛∗ = 𝑛𝑛

𝑘𝑘
 𝑘𝑘-operand modulators, and the output of each 

𝑘𝑘-operand modulator is accumulated using on-chip combiners or multiplexers to compute the 
final output of each row. Consequently, the total number of MOONs required for an 𝑛𝑛-input, 
𝑚𝑚-output layer is 𝑚𝑚𝑛𝑛

𝑘𝑘
, significantly reducing the number of active optical components.  

Unlike conventional PTCs designed for GEMM, the nonlinearity transfer function between 
the electrical signal and the transmission of the MOON needs to be considered when training 
DNN models. The input vector 𝒙𝒙𝒊𝒊𝒊𝒊 is encoded as the amplitude of the optical signals and will 
also be partitioned into 𝑛𝑛∗ segments 𝒙𝒙𝒊𝒊𝒊𝒊 = (𝒙𝒙𝒊𝒊𝒊𝒊𝟏𝟏 ,𝒙𝒙𝒊𝒊𝒊𝒊𝟐𝟐 , … ,𝒙𝒙𝒊𝒊𝒊𝒊𝒊𝒊 ). Thus, the output signals of one 
layer can be expressed as follows: 

𝒙𝒙𝒐𝒐𝒐𝒐𝒐𝒐′ = 𝑓𝑓(𝑾𝑾𝒙𝒙𝒊𝒊𝒊𝒊) =

⎝

⎜
⎜
⎜
⎛
Σ𝑖𝑖=1
𝑝𝑝=𝑛𝑛∗𝑓𝑓 �Σ𝑗𝑗=1𝑘𝑘 𝑔𝑔 �𝑾𝑾1,𝑗𝑗+(𝑖𝑖−1)𝑘𝑘 ,𝒙𝒙𝑖𝑖𝑛𝑛

𝑗𝑗+(𝑖𝑖−1)𝑘𝑘��

𝛴𝛴𝑖𝑖=1
𝑝𝑝=𝑛𝑛∗𝑓𝑓 �𝛴𝛴𝑗𝑗=1𝑘𝑘 𝑔𝑔 �𝑾𝑾2,𝑗𝑗+(𝑖𝑖−1)𝑘𝑘 ,𝒙𝒙𝑖𝑖𝑛𝑛

𝑗𝑗+(𝑖𝑖−1)𝑘𝑘��
⋮

𝛴𝛴𝑖𝑖=1
𝑝𝑝=𝑛𝑛∗𝑓𝑓 �𝛴𝛴𝑗𝑗=1𝑘𝑘 𝑔𝑔 �𝑾𝑾𝑚𝑚,𝑗𝑗+(𝑖𝑖−1)𝑘𝑘 ,𝒙𝒙𝑖𝑖𝑛𝑛

𝑗𝑗+(𝑖𝑖−1)𝑘𝑘��⎠

⎟
⎟
⎟
⎞

.            Eq. (1) 

where function 𝑓𝑓(∙)  represents the relationship between the total phase shift or amplitude 
response of all the operands, whereas 𝑔𝑔(𝑤𝑤𝑖𝑖 , 𝑥𝑥𝑖𝑖) is determined by the weight/signal encoding 
way and each operand's phase/amplitude response. For simplicity, we can use 𝑉𝑉(𝑤𝑤𝑖𝑖 , 𝑥𝑥𝑖𝑖) = 𝑤𝑤𝑖𝑖 ∙
𝑥𝑥𝑖𝑖 directly. As depicted in Fig. 1(e)-(g),  𝑤𝑤𝑖𝑖  can be encoded by programmable resistances (e.g., 
memristors or phase change materials [18]), tunable electrical amplifiers/attenuators, or the 
length of modulation arms if the weights are fixed. 𝑥𝑥𝑖𝑖 refers to the input current or voltage 
signals from input sources or the previous layer. After obtaining the transfer function of MOON 
(Eq. 1), one can deploy them in commercial deep learning platforms, e.g., Pytorch, to train 
MOON-based PTCs. 

Our MOON-based PTC significantly improves computational efficiency compared to 
previous GEMM-based PTCs [8]. For example, a 𝑘𝑘-operand MOMZI has a similar device 
footprint and dynamic tuning range to a single-operand MZI, but it can implement 𝑘𝑘 MACs. 
This outperforms a single-operand MZI in area- and energy- efficiency since it can only 
perform approximately one MAC operation per device in single-operand MZI-based PTCs. The 
advantage of MOONs lies in their ability to perform multiple MAC operations using a single 
device, making them more computationally efficient than previous ONNs. 

Moreover, as shown in Fig. 1(c), only one MOON is cascaded in one optical path of our 
circuit architecture, resulting in much smaller propagation loss compared to MZI-based or 
microring-based ONNs, where 2𝑛𝑛 + 1 MZIs or 𝑛𝑛 microrings are cascaded. As a result, we can 
deploy compact but lossy optical modulators, e.g., plasmonic-on-silicon modulators [19], as 
MOONs in our PTC, trading higher insertion loss for a much smaller chip footprint and lower 
modulation power. Detailed performance evaluations will be provided in our discussions. 
 

3. Multi-operand-MZI-based optical neural network 
 
In this work, we demonstrate the use of 𝑘𝑘-operand MZI modulators as the fundamental building 
blocks for constructing our MOMZI-PTC. Figure. 1(d) shows the structure of a MOMZI. 
Unlike the traditional MZI modulators with one or two phase modulators, a 𝑘𝑘–op MOMZI has 
𝑘𝑘 active phase shifters on each modulation arm, and each phase shifter is controlled by an 
independent signal. This structure is similar to lumped-segment MZIs used in optical 
communications [20], but the driving signals on each operand are independent and analog. For 



   
 

   
 

MZI modulators with dual modulation arms, the total number of operands can increase to 2𝑘𝑘 
to enable both positive and negative phase shifts. Suppose each shifter contributes to a phase 
shift 𝜙𝜙𝑖𝑖, the output intensity of a MOMZI can be expressed as:   

               𝑦𝑦𝑖𝑖 = 𝑓𝑓(Σ𝜙𝜙𝑖𝑖) = 𝑓𝑓�Σ𝑖𝑖=0𝑘𝑘 𝜙𝜙𝑖𝑖+ − Σ𝑖𝑖=0𝑘𝑘 𝜙𝜙𝑖𝑖−� = cos2( Σ𝑖𝑖=0
𝑘𝑘 𝜙𝜙𝑖𝑖

+−Σ𝑖𝑖=0
𝑘𝑘 𝜙𝜙𝑖𝑖

−+𝜙𝜙𝑏𝑏
2

)                Eq. (2) 
where 𝑓𝑓(∙) = cos2( ∙

2
), 𝜙𝜙𝑖𝑖+ denotes the 𝑖𝑖-th phase shifters on the upper arm of the modulator, 

and 𝜙𝜙𝑖𝑖− denotes that on the lower arm. Consequently, positive weight signals are encoded on 
upper modulation arms, while negative weight signals are encoded on the lower ones. 𝜙𝜙𝑏𝑏 is the 
phase bias when no input signals are operated on the modulation arms, which is used to tune 
the transfer function of the MOMZI. 

The modulation mechanism of the MOMZI plays a critical role in determining their transfer 
function with an input voltage signal. As shown in Fig. 2,  the transfer function of MZI 
modulators using the same foundry [15] can exhibit sinusoidal, quadratic (linear field intensity 
response), or other nonlinear transfer functions with the operating voltage 𝑉𝑉. The specific shape 
of the transfer function depends on the modulation mechanism (𝜙𝜙𝑖𝑖

±(𝑉𝑉)) and the modulator’s 
waveguide structure (𝑓𝑓(∙)). By optimizing these parameters, one can customize the transfer 
function of the MOMZI to realize certain nonlinear activation functions of DNNs. We will 
discuss this hereinafter. 
 

 
Fig. 1 General architecture of the MOON-based photonic tensor core. (a) A conventional photonic tensor core 
based on single-operand modulators, which has an array of input modulators and 𝑂𝑂(𝑚𝑚𝑛𝑛) photonic devices to construct 
the weight matrix. (b) Schematic of the MOON-based PTC to implement an 𝑛𝑛-input, 𝑚𝑚-output layer. (c) Schematic of 
MOON array to implement a 𝑛𝑛 × 1 vector product operation, which requires 𝑛𝑛∗ = 𝑛𝑛

𝑘𝑘
 𝑘𝑘-operand MOONs. The output 

is obtained by accumulating the output signal of each MOON using multiplexers. (d) Schematic of a 𝑘𝑘-operand 
MOMZI-based MOON, which consists of 𝑘𝑘 operands on each arm. There are various approaches to encoding weight 
signals 𝑤𝑤𝑖𝑖 and input signals 𝑥𝑥𝑖𝑖 on each modulation region. For instance, one can use (e) programmable resistances to 
encode 𝑤𝑤𝑖𝑖 and current signals to encode 𝑥𝑥𝑖𝑖, or (f) tunable amplifiers/attenuators to encode 𝑤𝑤𝑖𝑖 and voltage signal to 
encode 𝑥𝑥𝑖𝑖, or (g) adjust modulation length to encode fixed weight signals and voltage signals to encode 𝑥𝑥𝑖𝑖.  



   
 

   
 

 

 
Fig. 2 Transfer function of different MZI modulators under different modulation mechanisms. All the data are 
experimental data from our measurement or the process design kit (PDK) model [15] on Lumerical Interconnect. 𝑉𝑉𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟 
is the maximum allowed operating voltage. 
 
    Supposing the dot product information 𝑤𝑤𝑖𝑖  ∙ 𝑥𝑥𝑖𝑖  is directly encoded as the operating voltage 
𝑉𝑉𝑖𝑖 on each operand of the MOMZI, we can rewrite Eq. (2) as Eq. (3): 

𝒙𝒙𝒐𝒐𝒐𝒐𝒐𝒐′ = 𝑓𝑓(𝑾𝑾𝒙𝒙𝒊𝒊𝒊𝒊) = 1
2

⎝

⎜⎜
⎜
⎛
Σ𝑖𝑖=1𝑛𝑛∗ �𝑐𝑐𝑐𝑐𝑐𝑐 �Σ𝑗𝑗=1𝑘𝑘 𝜙𝜙(𝑾𝑾1,𝑗𝑗+(𝑖𝑖−1)𝑘𝑘 𝒙𝒙𝑖𝑖𝑛𝑛

𝑗𝑗+(𝑖𝑖−1)𝑘𝑘) + 𝜙𝜙𝑏𝑏
1,𝑖𝑖��

𝛴𝛴𝑖𝑖=1𝑛𝑛∗ �𝑐𝑐𝑐𝑐𝑐𝑐 �Σ𝑗𝑗=1𝑘𝑘 𝜙𝜙(𝑾𝑾2,𝑗𝑗+(𝑖𝑖−1)𝑘𝑘 𝒙𝒙𝑖𝑖𝑛𝑛
𝑗𝑗+(𝑖𝑖−1)𝑘𝑘) + 𝜙𝜙𝑏𝑏

2,𝑖𝑖��
⋮

𝛴𝛴𝑖𝑖=1𝑛𝑛∗ �𝑐𝑐𝑐𝑐𝑐𝑐 �Σ𝑗𝑗=1𝑘𝑘 𝜙𝜙(𝑾𝑾𝑚𝑚,𝑗𝑗+(𝑖𝑖−1)𝑘𝑘 𝒙𝒙𝑖𝑖𝑛𝑛
𝑗𝑗+(𝑖𝑖−1)𝑘𝑘) + 𝜙𝜙𝑏𝑏

𝑚𝑚,𝑖𝑖��⎠

⎟⎟
⎟
⎞

+ 𝒃𝒃   Eq. (3) 

    
In Eq. (3), positive or negative phase shifts are achieved by applying the operating voltages to 
each phase shifter's upper or lower arm. The phase bias 𝜙𝜙𝑏𝑏

𝑝𝑝,𝑖𝑖 of the 𝑖𝑖th MOMZI on row 𝑝𝑝 of 
MOMZI-PTC  can be adjusted to improve the expressivity of our neural architecture. The 
constant  𝒃𝒃 = 𝑛𝑛

𝑘𝑘
  can be eliminated after photodetection. Using Eq. (3). we can model the 

MOMZI on commercial deep learning platforms, e.g., PyTorch, making it practical to train and 
deploy the DNN.  
 

4. Experimental results 
In this study, we designed and fabricated a 4-op MOMZI that is capable of implementing a 4×1 
vector operation on the silicon photonics platform. The chip layout was drawn and verified 
using Synopsys OptoDesigner (version 2021) and then fabricated by AIM Photonics. The 
schematic of the MOMZI is illustrated in Fig. 3(b), while Fig. 3(a) shows close-up images of 
its components, including phase shifters, 50-50 directional couplers, and photodetectors.  
    We use two phase shifters on each modulation arm to enable both positive and negative 
weights during training. In experiments, we encode 𝜙𝜙𝑖𝑖  ∝ |𝑤𝑤𝑖𝑖

±| ∙ 𝑥𝑥𝑖𝑖  , where 𝑤𝑤1+  and 𝑤𝑤2+  are 
positive and 𝑤𝑤1− and 𝑤𝑤2− are negative, 𝑤𝑤1 and 𝑤𝑤2 are encoded on the upper arm, while 𝑤𝑤1− and 
𝑤𝑤2− are encoded on the downer arm. The transfer function of our modulator can then be written 
as 
                 𝑇𝑇 = 𝑓𝑓(Σ𝑖𝑖𝜙𝜙𝑖𝑖 + 𝜙𝜙𝑏𝑏) = cos2(𝜙𝜙1(w1

+ ∙ 𝑥𝑥1) + 𝜙𝜙2(w2
+ ∙ 𝑥𝑥2)          

−𝜙𝜙3(w1
− ∙ 𝑥𝑥3) − 𝜙𝜙4(w2

− ∙ 𝑥𝑥4) + 𝜙𝜙𝑏𝑏)                             Eq. (4) 

We tune one additional phase shifter on the upper arm to let 𝜙𝜙𝑏𝑏 ≈
𝜋𝜋
2
 to obtain a relatively linear 

and balanced output range. 



   
 

   
 

The schematic of the testing setup is illustrated in Fig. 4. Continuous-wave (CW) light is 
coupled to the chip through an edge coupler. The MOMZI’s phase shifters are programmed 
using a high-precision multi-channel digital-to-analog converter (DAC). The on-chip 
photodetector, along with an off-chip transimpedance amplifier (TIA), converts the output 
optical signal to electrical voltage outputs. These converted electrical outputs will subsequently 
be read using oscilloscopes. A microcontroller is used to program the electrical signals that 
represent 𝑤𝑤𝑖𝑖  ∙ 𝑥𝑥𝑖𝑖 to the DAC and read the output signals in this work. We use computers to 
process the measurement data, train the DNN parameters, and implement the DNN model. 
Notably, current fabrication and co-packaging technologies enable the integration of electrical 
control circuits and the laser on a single substrate [21] or a single chip  [22], resulting in much 
higher compactness, shorter interconnect paths, and higher efficiency.  

  

Fig. 3 Schematic of the 4-operand MOMZI. The micrographs of necessary optical components are highlighted in (a) 
and the full schematic of the MOON is shown in (b).  

 

 
 
 
 
 
 
 



   
 

   
 

 

Fig. 4 Experimental setup of MOMZI-ONN. (a) Schematic of our MOMZI-ONN test flow. The entire tensor 
operation is first partitioned into multiple 4×1 blocks, and each block is implemented optically on a 4-op MOMZI. (b) 
The weight parameters and the input signals are programmed by a multi-channel digital-to-analog converter (DAC). 
Shown in (c), the output optical signals are converted to photocurrents using on-chip photodetectors. We use an off-
chip TIA to convert the output photocurrent to electrical signals, which are then read by the oscilloscope. Both the 
oscilloscope and the DAC are controlled by a microcontroller. The tensor operation results are provided to the computer 
for data processing in order to train and deploy the DNN. 

 
In this work, we construct a CNN with our MOMZI and benchmark its performance on a 

street view house number (SVHN) dataset. It is more complicated than the MNIST dataset [16] 
since each image contains color information and various natural backgrounds. To perform 
convolutional operations with our PTCs, we employ the widely-used tensor unrolling method 
(im2col) [23]. Large-size tensor operations are partitioned into 4×1 blocks and mapped onto 
our MOMZI. We first calibrate the behavior of each phase shifter for training and model it 
using Eq. 4, as shown in Figure 5(a). Based on the chip measurement data, our proposed 
hardware-aware training framework can efficiently train the ONN weights while being fully 
aware of all the physical non-idealities during optimization, e.g., process variations, thermal 
crosstalk, and signal quantization [14]. The dynamic noises are also measured (shown in Fig. 
5(b)) and added to the training framework to improve the robustness of ONNs. Then we map 
the trained weights to our MOMZI. Finally, we evaluate the task performance of our photonic 
neural chip on different ML tasks, where partial accumulation, nonlinearity, and other post-
processing operations are offloaded to the digital computer. Figure 5(c) illustrates the network 
structure for training our MOMZI-ONN. 

Our experiments show that under 4-bit voltage control resolution (16 phase shift levels for 
each operand), the inference accuracy of the CNN reaches ~85.89% in our experimental 
demonstration. The confusion matrix depicting the prediction results is shown in Fig. 5(d). 
Figure 5(e)(f) shows the tested probability distribution of different street-view numbers. As a 
reference, we can achieve 90.6% accuracy using an ideal CNN model with the same network 
structure on 64-bit computers. One can improve the task performance of MOMZIs using 
operands with more linear phase responses and higher control precision, which will be shown 
hereinafter. 

 



   
 

   
 

 
Fig. 5 Experimental result of street view house number (SVHN) recognition with the MOMZI-ONN. (a) Our 
measured output data and curve fitting for training the MOMZI. The tuning range of the total phase shift of four 
operands is [−𝜋𝜋

2
, 𝜋𝜋
2
]. (b) Dynamic noise analysis of output signal of MOMZI, the measured standard deviation of the 

dynamic noise is ~0.5%. (c) Structure of the CNN, the convolution is realized by MOMZIs with im2col approach. The 
first convolutional layer has one input channel and 32 output channels with a stride of 2. The subsequent two 
convolutional layers have 32 input/output channels with a stride of 1. After adaptive average pooling, we use a linear 
classifier with 10 outputs for final recognition. (d) Our measured output data and curve fitting for training the MOMZI-
ONN. The tuning range of the total phase shift of four operands is [−𝜋𝜋

2
, 𝜋𝜋
2
]. (c) The confusion matrix of the trained 

MOMZI-ONN on the SVHN dataset shows a measured accuracy of 85.89%. (e) and (f) show the predicted probability 
distribution of our MOMZI-ONN on two selected test digits in the SVHN dataset. 

 

 

5. Discussion  
 
Expressivity evaluation. Our MOMZI-ONN exhibits comparable trainability and expressivity 
with ONNs designed for GEMMs with 𝑘𝑘 times fewer optical component usage (𝑘𝑘 is the number 
of operands). By explicitly modeling the transfer function of the MOMZI during ONN training, 
we can efficiently learn the mapping from the software model to the MZI devices. Here, we 
simulate the task performance of our MOMZI-ONN with different numbers of operands on the 
SVHN dataset using the same NN model and control precision. An ideal CNN model with the 
same model architecture is also trained as a reference. In the evaluation, the phase response of 
each operand is 𝜙𝜙 = 𝛾𝛾𝑉𝑉, which can be realized on linear phase shifters such as lithium niobate 
EO phase shifters [24]. In simulations, we add a phase bias 𝜙𝜙𝑏𝑏 = 𝜋𝜋

2
 to enable a balanced output 

range. The evaluation results are shown in Fig. 6, showing that our MOMZI-ONNs can 
achieve >91% accuracy on the SVHN dataset, which has a <0.6% accuracy difference 



   
 

   
 

compared to the ideal CNN model. It should be noted that the task performance of MOMZI-
ONN is insensitive to the number of operands once we properly normalize the operands. 
Moreover, the number of active photonic devices to implement an 𝑛𝑛-input, 𝑚𝑚-output linear 
layer are 𝑚𝑚𝑛𝑛

𝑘𝑘
  𝑘𝑘-operand MOMZIs. Therefore, ONNs based on MOMZIs with a large number 

of operands will significantly reduce the hardware cost without accuracy loss.  
 

 
Fig. 6 Task performance and hardware cost of MOMZI-ONN on SVHN dataset. Inference accuracies of MOMZI-
ONNs with different operand numbers are shown. Using the same neural network structure, the accuracy of an ideal 
CNN model is 91.8%. The normalized total number of active photonic devices with different operand numbers of 
MOMZI-ONNs compared to ideal CNN models are shown. We suppose the matrix size is 𝑛𝑛 × 𝑛𝑛, the number of 
microring- and MZI-ONNs are normalized to 1. 
 

Propagation delay and loss. By minimizing the number of cascaded optical components in 
the critical path of PTCs, MOMZI-PTC outperforms single-operand MZI-PTC in both 
propagation loss and optical delay by one to two orders of magnitude. In this work, we evaluate 
the propagation delay and loss of MOMZI-PTC using the foundry’s process-design-kit (PDK) 
libraries. The parameters of optical devices are given in Table. S1. As shown in Fig. 1(c), the 
MOMZIs in one optical path are placed parallelly in our PTC, so the insertion loss and 
propagation loss contributed by lossy MZIs will not accumulate when the size of the DNN 
model increases. As a result, the optical delay and the propagation loss of a MOMZI-PTC with 
n-inputs and m- outputs can be calculated as follows: 

𝜏𝜏𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀−𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑛𝑛𝑔𝑔
𝑐𝑐

(𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐿𝐿𝑐𝑐𝑐𝑐𝑚𝑚𝑏𝑏𝑖𝑖𝑛𝑛𝑟𝑟𝑟𝑟)                                 Eq. (5) 
               𝐼𝐼𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀−𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐼𝐼𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  + 𝐼𝐼𝐿𝐿𝑐𝑐𝑐𝑐𝑚𝑚𝑏𝑏𝑖𝑖𝑛𝑛𝑟𝑟𝑟𝑟                                    Eq. (6) 

In Eq. (5), 𝑛𝑛𝑟𝑟 = 4.3 is the group index of silicon waveguides. 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  is the length of the 
MOMZI, which depends on the operands and the waveguides used to connect these operands. 
Since the tuning ranges of a MOMZI and a single-operand MZI are the same, the total length 
of the operands of MOMZI should also be the same as the length of a high-speed electro-optic 
(EO) modulator. Here we assume the distance between each operand to be 𝑑𝑑 = 10 𝜇𝜇𝑚𝑚 based 
on the device layout of a recently-published two-operand 10- 𝜇𝜇𝑚𝑚 -radius microring 
modulator [25]. 𝐿𝐿𝑐𝑐𝑐𝑐𝑚𝑚𝑏𝑏𝑖𝑖𝑛𝑛𝑟𝑟𝑟𝑟  is the length of the on-chip combiners/multiplexers, for microring-
filter-based multiplexers, 𝐿𝐿𝑐𝑐𝑐𝑐𝑚𝑚𝑏𝑏𝑖𝑖𝑛𝑛𝑟𝑟𝑟𝑟 = 𝑛𝑛

𝑘𝑘
 𝐿𝐿𝑟𝑟𝑖𝑖𝑛𝑛𝑟𝑟 . 𝐼𝐼𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  is the insertion loss of one multi-

operand modulator, 𝐼𝐼𝐿𝐿𝑐𝑐𝑐𝑐𝑚𝑚𝑏𝑏𝑖𝑖𝑛𝑛𝑟𝑟𝑟𝑟  is the total insertion loss of the combiner, which is 𝑛𝑛
𝑘𝑘
𝐼𝐼𝐿𝐿𝑟𝑟𝑖𝑖𝑛𝑛𝑟𝑟 with 

add-drop microrings as multiplexers. Increasing the operand number k can potentially reduce 
both the IL and propagation delay.  

On the other hand, the propagation loss of single-operand MZI-PTC can be estimated as 
(𝑛𝑛 + 𝑚𝑚 + 1)𝐼𝐼𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀(𝑙𝑙𝑙𝑙) + 𝐼𝐼𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀(ℎ𝑙𝑙) , while the total device length can be expressed as 



   
 

   
 

(𝑛𝑛 + 𝑚𝑚 + 1)𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀(𝑙𝑙𝑙𝑙) + 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀(ℎ𝑙𝑙) . Here, 𝑀𝑀𝑀𝑀𝐼𝐼(ℎ𝑐𝑐) denotes the high-speed EO modulators for 
input signal encoding, and 𝑀𝑀𝑀𝑀𝐼𝐼(𝑙𝑙𝑐𝑐) is the TO switch for weight encoding. Because the tuning 
range and the modulation mechanism of the MOMZI should be the same as that of the input 
EO modulator, we let 𝐼𝐼𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐼𝐼𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀(ℎ𝑙𝑙).  The model parameters are available in Table. S1. 

The results presented in Fig. 7(a) and 7(b) demonstrate that using the same component 
library [15], our MOMZI-PTC can achieve an optical delay that is approximately 49 times 
lower than that of a single-operand MZI-PTC. Furthermore, the propagation loss of our 
MOMZI-PTC is ~257 dB lower than that of the single-operand MZI-PTC, which results in 
lower laser power requirements to drive the ONN and a lower response time. 

 

 
Fig. 7 Performance analysis of MOMZI-PTC and comparison with single-operand (1op) MZI-PTC [8] using 
foundry PDKs [15]. MOMZIs with different operand numbers are shown. Here we suppose the circuit structure of the 
MZI-based PTC is Clement-style [26]. (a) Optical propagation delay in log scale. (b) Optical propagation loss. (c) 
Device footprint. 

 

Footprint.  Our MOMZI-PTC significantly improves the area efficiency and reduces the 
number of active devices compared to a single-operand MZI-PTC [8]. Unlike single-operand 
active devices such as single-operand MZI, our 𝑘𝑘-op MOMZI is capable of implementing 𝑘𝑘 
dot products and 𝑘𝑘 − 1 additions, which results in a much higher hardware efficiency in terms 
of #MAC/device.  The total device footprint of 𝑘𝑘-op MOMZI-PTCs can be estimated using Eq. 
(7): 

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀−𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑚𝑚×𝑛𝑛
𝑘𝑘
𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑆𝑆𝑐𝑐𝑐𝑐𝑚𝑚𝑏𝑏𝑖𝑖𝑛𝑛𝑟𝑟𝑟𝑟                                    Eq. (7) 

where we assume a distance of 𝑑𝑑 = 10 𝜇𝜇𝑚𝑚 between neighboring operands. Suppose the device 
footprint of a high-speed MZI modulator is 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀(ℎ𝑙𝑙) = 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀(ℎ𝑙𝑙) ∙ 𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀(ℎ𝑙𝑙).The device footprint 
of one 𝑘𝑘 − op MOMZI can then be estimated as 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = �𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀(ℎ𝑙𝑙) + (𝑘𝑘 − 1)𝑑𝑑� ∙ 𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀(ℎ𝑙𝑙). 
Figure. 7(c) shows the estimated device footprint of MOMZI-based PTC and single-operand 
MZI-PTC based on our assumptions. The estimated device footprint of MOMZI-PTC and MZI-
PTC is shown in Fig. 7(c). When the matrix size is 128×128, our 128-op MOMZI-PTC 



   
 

   
 

consumes ~127× fewer MZI modulators, leading to ~6.2× footprint reduction compared to 
single-operand MZI-PTC [8] with the same matrix size and optical component selection. 

From Eq. (7) and Fig. 7(c), MOMZI-based PTC will be more area efficient with a larger 
number of operands 𝑘𝑘 on each MOMZI. Previous has shown that a 10-μm-radius silicon-based 
microring modulator can be divided into 32 independent active segments using a 45-nm 
technology node [27], where each operand only consumes 2μm in length. This means that an 
MZI-modulator with a 1.6 mm-length modulation arm can support up to 800 operands using 
current layout technology, which should be comparable with other analog electronic tensor 
cores in scalability, e.g., 256 × 256 memristor-based crossbar arrays [28].  

Another big advantage of the proposed MOON-based PTC is its superior compatibility with 
compact, high-speed optical modulators, even with high insertion loss, e.g., plasmonic-on-
silicon modulators with only 15 μm modulation length and 11.2 dB 𝐼𝐼𝐿𝐿 [5]. The fundamental 
reason is the small number of cascaded devices in the critical path. Figure 7 shows the 
normalized device footprint compared with silicon-based MZI-PTCs, which shows the 
plasmonic-on-silicon-MOMZI-PTC can reduce the footprint by 177×  compared to single-
operand silicon-MZI-based PTC. Single-operand MZI-PTCs are not compatible with these 
compact high-loss modulators because there are 2𝑛𝑛 + 1  MZIs in the critical path. Using 
compact high-loss modulators for weight configuration will lead to significant propagation loss 
and require high laser power to drive the neural chip. 

Finally, the hardware cost of MOMZI-PTC can be further optimized with operand pruning 
strategies. To implement an FC layer in DNN models, especially with sparse matrices [29], we 
only need to encode non-zero weights on the MOMZIs. The operands of MOMZIs with zero 
weight values can be either removed from the device to save footprint or power-gated to reduce 
energy consumption. Sparsity-aware training [30] can be applied to prune redundant MOMZI 
operands while maintaining task accuracy.  

 
Fig. 8 Normalized footprint of MOMZI-based PTC using scaling technologies. The x-axis is the ratio between 

the area of low-speed silicon-based TO MZI (550 × 125 𝜇𝜇𝑚𝑚2) and high-speed MZI. Using compact plasmonic-on-
silicon high-speed modulators (~220 ×  100 𝜇𝜇𝑚𝑚2 ) [19], 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀(𝑙𝑙𝑐𝑐𝑙𝑙−𝑙𝑙𝑝𝑝𝑟𝑟𝑟𝑟𝑠𝑠)/𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀(ℎ𝑖𝑖𝑟𝑟ℎ−𝑙𝑙𝑝𝑝𝑟𝑟𝑟𝑟𝑠𝑠) ≅ 3.12 , and a 128-op 
MOMZI-PTC consumes a 222x smaller footprint than single-operand MZI-PTCs using silicon-based MZI modulators. 
For simplicity, we assume the entire waveguide length for connecting the operands is the same as the total length of 
the operands of MOMZIs, so 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 2𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀(ℎ𝑖𝑖𝑟𝑟ℎ−𝑙𝑙𝑝𝑝𝑟𝑟𝑟𝑟𝑠𝑠). 
 

Energy efficiency. MOMZI-based PTC is a more energy-efficient alternative to single-
operand MZI-PTCs for implementing large-tensor-size operations due to its lower propagation 
loss, which allows it to consume over 256 dB less laser power. The total power consumption 
of MOMZI-PTC for computing comprises the power required to drive the lasers, modulators, 
and photodetectors and for biasing the MOMZI, as well as the power needed to drive the digital-
to-analog converters (DACs) and analog-to-digital converters (ADCs). The silicon-based 
carrier-depletion MZI’s modulation energy consumption in previous work can achieve ~146 
fJ/bit  [31]. Furthermore, the power to bias the MOMZI is ~2.5 mW per phase shifter if we use 
thermal phase shifters from foundry PDKs [32].  



   
 

   
 

Using the parameters of existing technology provided in Table. S3, the optical part of 
MOMZI-PTC, accounts for <9% of total power consumption when the tensor size is 
128 × 128. The power breakdown analysis in Fig. 8 indicates that our 128-op MOMZI-PTC  
can achieve ~56 TOPS/W at a 10 GHz clock rate, 100% higher than existing analog electronic 
tensor cores [33] with 100x faster operating speed. Currently, the energy efficiency of MOMZI-
PTC is dominated by data converters such as ADCs. This work employs an 8-bit, 10 GSPS 
ADC that consumes 39 mW per channel [34].  

The energy efficiency can be further improved to ~ 604 TOPS/W using emerging high-speed 
and energy-efficient data converters and EO modulators. Recent advances in energy-efficient 
active optical components, such as the plasmonic-on-silicon modulator that consumes 
approximately 0.1 fJ per bit modulation energy at 50 GHz operating frequency, have made it 
possible to reduce the power consumption of MOMZI further [19]. The power to bias the 
MOMZI can be decreased to zero with phase change materials or nano-opto-electro-mechanical 
devices [35,36]. Using energy-efficient modulators, the energy consumption of the optical 
computing part only accounts for <3% of the total power consumption, showing that large-size 
MOMZI-PTC will not bring scalability issues due to excessive laser power. Moreover, we can 
use energy-efficient analog content-addressable memory (ACM) to replace the ADCs [37], 
reducing the power consumption of ADCs by ~33x. The final power breakdown of MOMZI-
PTC for computing shows our MOMZI-PTC can achieve a competitive energy efficiency of 
~604 TOPS/W, 20x higher than existing memristor-based analog electronic tensor cores [33]. 
More details of our power analysis are provided in supporting information note 2.  

 
Fig. 9 Power breakdown of a 𝟏𝟏𝟐𝟐𝟏𝟏 × 𝟏𝟏𝟐𝟐𝟏𝟏 photonic tensor core implemented by 128 128-op MOMZIs 
using existing technology(a) and emerging technology(b). (a) The total power of the MOMZI-ONN is 
5.7W at 10 GHz clock rate (56 TOPS/W). (b) Using emerging technologies, we use ADC-less designs (e.g., 
magnetic-tunnel-junction (MTJ)-based analog content-addressable memory (ACAM) [37,38]) to boost the 
energy efficiency to ~604 TOPS/W.  

In addition, our 𝑘𝑘-op MOMZI-PTC can reduce the weight reconfiguration energy by 𝑘𝑘 times 
compared to single-operand-device-based PTCs, which will bring considerable energy 
efficiency improvement, especially when the photonic tensor cores need to be frequently 
reconfigured to map a large number of matrix blocks in DNNs. The number of active optical 
devices in our MOMZI-PTC is only 𝑂𝑂(𝑚𝑚𝑛𝑛

𝑘𝑘
),  which is 𝑘𝑘 times fewer than that of PTCs with 

single-operand devices (𝒪𝒪(𝑚𝑚𝑛𝑛) [17] or 𝒪𝒪(max(𝑚𝑚2,𝑛𝑛2)) [39]) This feature of MOMZI-PTC is 
essential to implement modern DNNs, where weight loading takes nontrivial hardware costs 
[22].  

 

Nonlinearity engineering. The nonlinearity of MOONs can be customized in various 
dimensions to achieve a desired activation function, potentially saving power for doing 
activation functions electronically. The built-in nonlinearity of MOON is contributed by the 
weight/signal encoding way and the nonlinear transfer function of the optical modulator with 



   
 

   
 

the input voltage. To customize such built-in nonlinearity, one can add electrical or optical 
components before or after photodetection to alter the optical outputs to implement the 
activation function. Previous work has widely investigated this approach [41–43]. Typically, 
one can add saturable absorbers before photodetection with a linear optical modulator [44] to 
construct a ReLU-like MOON, reducing the hardware cost to realize activation functions 
electronically. 

Depending on the transfer function of the MOON, the weight encoding approach can be 
designed to enable high-speed dynamic tensor operations beyond ones with stationary weights. 
Dynamic tensor operations mean both the inputs and the weights can be updated at high speed, 
which is crucial in emerging applications, such as the self-attention operation in 
Transformer [45] and on-chip training tasks for intelligent edge learning. A specific example 
of an optical modulator with a linear field response region with voltage (|Δ𝐸𝐸𝑐𝑐𝑜𝑜𝑜𝑜| ∝ Δ𝑉𝑉) is 
provided here. Suppose the electrical modulation signal of the modulator is bidirectional; then, 
one can use two MOONs and one differential photodetector to implement high-speed vector-
to-vector operations. As shown in Fig. 10, the weight and input voltage signal 𝑤𝑤𝑖𝑖  and 𝑥𝑥𝑖𝑖 are 
encoded with the same phases on operand 𝑖𝑖 of the upper modulator, and high-speed signals 𝑤𝑤𝑖𝑖  
and 𝑥𝑥𝑖𝑖 with opposite phases encoded on operand 𝑖𝑖 of the downer modulator. After differential 
photodetection, one can obtain the output current signal as: 

𝐼𝐼− = 𝐼𝐼0 + 𝛼𝛼(Σ(𝑤𝑤𝑖𝑖 − 𝑥𝑥𝑖𝑖)2) 

𝐼𝐼+ = 𝐼𝐼0 + 𝛼𝛼(Σ(𝑤𝑤𝑖𝑖 + 𝑥𝑥𝑖𝑖)2) 

𝐼𝐼𝑐𝑐𝑜𝑜𝑜𝑜 = 𝐼𝐼+ − 𝐼𝐼− = 2𝛼𝛼Σ(𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖)                                     Eq. (8) 

where 𝛼𝛼 is the modulation efficiency of each operand. 𝐼𝐼0 is the output intensity of the modulator 
at the biased point. Compared to MOONs that use memristors to encode stationary weights, the 
dual-linear-modulator-based MOON shown in Fig. 10 can enable high-speed weight 
reprogramming/updates to implement high-speed dynamic tensor operations. One can 
investigate more efficient signal encoding approaches of MOONs to support more types of 
tensor operations in state-of-the-art DNNs. 

 
Fig. 10 A MOON with two linear modulators for matrix-matrix multiplications. The optical output power of each 
modulator is proportional to the electrical input power or 𝑉𝑉2. Here we apply differential input signals ±𝑥𝑥𝑖𝑖𝑐𝑐  on 
upper/lower modulators, and put weight signals 𝑤𝑤𝑖𝑖𝑐𝑐  on both upper/lower modulators. The output power after 
differential photodetection is then proportional to ∑ 𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖𝑛𝑛

1 .    
 

6. Conclusion 
We have presented a scalable, energy-efficient optical neural network with customized multi-
operand optical neurons (MOONs). We have experimentally demonstrated a 4-operand silicon-
photonic MOMZI on practical image recognition tasks. Compared to prior single-operand-
MZI-based photonic tensor cores (PTCs), our MOMZI-based PTC design can achieve one to 
two orders-of-magnitude reduction in active optical component usage, footprint, latency and 
propagation loss. The speed, footprint, and energy efficiency of our MOON-based PTC can 



   
 

   
 

benefit from more advanced technologies, e.g., faster and more efficient data converters, optical 
devices, and nonlinearity engineering. Our customized MOON design provides a scalable 
solution for the next-generation photonic AI accelerators with extreme compute density and 
energy efficiency.  

7. Supporting information 
7.1 Parameter tables for the delay, propagation loss, and footprint estimation 

Table. S1. Device parameters used in our performance estimation based on AIM photonics’ 

PDK [15]. 

Optical component Length (μm) Insertion loss (dB) 

High-speed EO MZI (𝑀𝑀𝑀𝑀𝐼𝐼(ℎ𝑐𝑐)) 1600 3 

High-speed plasmonic EO MZI [19] ~220a 11.2 

Low-speed TO MZI (𝑀𝑀𝑀𝑀𝐼𝐼(𝑙𝑙𝑐𝑐)) 550 1 

Microring-based filter 16 0.25 

 
a. Based on the layout picture of the MZI in the reference (~200 × 100 𝜇𝜇𝑚𝑚2). The high-

speed phase shifter part is only 15 𝜇𝜇𝑚𝑚 in length, so the size of the modulator can be 
further optimized with more compact directional couplers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   
 

   
 

Table. S2. Parameters to calculate the performance of 𝑘𝑘-op MOMZI-PTC. 

Parameters Values 

𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀   𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀(ℎ𝑙𝑙) + (𝑘𝑘 − 1)𝑑𝑑 

𝐿𝐿𝑐𝑐𝑐𝑐𝑚𝑚𝑏𝑏𝑖𝑖𝑛𝑛𝑟𝑟𝑟𝑟  
𝑛𝑛
𝑘𝑘
𝐿𝐿𝑟𝑟𝑖𝑖𝑛𝑛𝑟𝑟 

𝑑𝑑 10 𝜇𝜇𝑚𝑚 (1.5 𝜇𝜇𝑚𝑚 after scaling) 

𝐼𝐼𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐼𝐼𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀(ℎ𝑙𝑙) 

𝐼𝐼𝐿𝐿𝑐𝑐𝑐𝑐𝑚𝑚𝑏𝑏𝑖𝑖𝑛𝑛𝑟𝑟𝑟𝑟  𝑛𝑛
𝑘𝑘
𝐼𝐼𝐿𝐿𝑟𝑟𝑖𝑖𝑛𝑛𝑟𝑟  

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 × 𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀(𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 460 𝜇𝜇𝑚𝑚) 

𝑆𝑆𝑐𝑐𝑐𝑐𝑚𝑚𝑏𝑏𝑖𝑖𝑛𝑛𝑟𝑟𝑟𝑟  
𝑚𝑚𝑛𝑛
𝑘𝑘

× 𝐿𝐿𝑟𝑟𝑖𝑖𝑛𝑛𝑟𝑟 × 𝑊𝑊𝑟𝑟𝑖𝑖𝑛𝑛𝑟𝑟(𝑊𝑊𝑟𝑟𝑖𝑖𝑛𝑛𝑟𝑟 = 16 𝜇𝜇𝑚𝑚) 

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀(ℎ𝑙𝑙) 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀(ℎ𝑙𝑙) × 𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀(ℎ𝑙𝑙) (𝑀𝑀𝑀𝑀𝐼𝐼(ℎ𝑐𝑐) = 460 𝜇𝜇𝑚𝑚) 

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀(𝑙𝑙𝑙𝑙) 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀(𝑙𝑙𝑙𝑙) × 𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀(𝑙𝑙𝑙𝑙) (𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀(𝑙𝑙𝑙𝑙) = 127 𝜇𝜇𝑚𝑚) 

 
 

  
7.2 Energy efficiency.  

The power consumption of n-input, m-output MOMZI-PTC for computing is contributed 
by lasers, weight configuration, and conversion between electrons and photons, which is 
obtained by: 

       𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀−𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑃𝑃𝑙𝑙𝑟𝑟𝑙𝑙𝑟𝑟𝑟𝑟 + 𝑛𝑛(𝑚𝑚
𝑘𝑘
𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐸𝐸𝐷𝐷𝐷𝐷𝑃𝑃)𝑓𝑓𝑋𝑋 + 𝑚𝑚𝑛𝑛

𝑘𝑘
𝑃𝑃𝑜𝑜ℎ𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟𝑙𝑙 + 𝑚𝑚𝑃𝑃𝐷𝐷𝐷𝐷𝑃𝑃        Eq. (S1) 

The parameter table for modeling Eq. (S1) is provided in Table. S3. In Eq. (S1),  𝑃𝑃𝑙𝑙𝑟𝑟𝑙𝑙𝑟𝑟𝑟𝑟  is 
the laser power. 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  represents the energy consumption of modulators, 𝐸𝐸𝐷𝐷𝐷𝐷𝑃𝑃  and 𝐸𝐸𝑐𝑐𝑟𝑟  
include the power consumption for photodetection, amplification, and analog-to-digital 
conversion. 𝑓𝑓𝑚𝑚𝑠𝑠 is the operating speed of modulators, as determined by the total delay of the 
MOMZI-ONN. In the MOMZI-ONN, 𝑃𝑃𝑜𝑜ℎ𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟𝑙𝑙  is the static power to tune the MOMZI to a bias 
point. Using thermal phase shifters for bias tuning, 𝑃𝑃𝑜𝑜ℎ𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟𝑙𝑙 = 2.5 𝑚𝑚𝑊𝑊. By utilizing energy-
efficient active optical components based on nano-opto-electro-mechanical systems or phase 
change materials [46,47], we can eliminate the power consumption for phase maintenance. To 
carrier-depletion-based silicon MZI modulators, 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  can achieve ~146 fJ/bit. Using 
energy-efficient plasmonic-on-silicon modulators , 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 0.1 fJ/bit. One DAC’s energy 
consumption can be estimated by  [48]: 

𝐸𝐸𝐷𝐷𝐷𝐷𝑃𝑃 = 𝐹𝐹𝐷𝐷𝑛𝑛𝑏𝑏𝐹𝐹𝑙𝑙/𝐵𝐵𝑟𝑟                                                     Eq. (S2) 
where 𝐹𝐹𝐷𝐷 is the DAC figure of merit, 𝑛𝑛𝑏𝑏 is the DAC resolution, 𝐹𝐹𝑙𝑙 is the sampling frequency, 
𝐵𝐵𝑟𝑟  is the bit rate. In our estimation,  𝐹𝐹𝐷𝐷 = 35 fJ/step in a 7-nm microprocessor [42],  𝑛𝑛𝑏𝑏 = 8 
bit, 𝐹𝐹𝑙𝑙/𝐵𝐵𝑟𝑟 = 1. 



   
 

   
 

The propagation loss, the photodetectors' minimum detectable power, and the outputs' 
precision dictate the laser power. The total laser power can then be calculated by the following 
equation [6]: 

𝑃𝑃𝑙𝑙𝑟𝑟𝑙𝑙𝑟𝑟𝑟𝑟 = 𝑚𝑚� 𝑛𝑛
𝜌𝜌2

ℎ𝜈𝜈
𝜂𝜂𝑀𝑀𝜂𝜂

max �22𝑀𝑀𝑏𝑏+1, 𝑃𝑃𝑑𝑑𝑉𝑉𝑟𝑟
𝑟𝑟
� 𝑓𝑓𝑚𝑚𝑠𝑠� × 𝑛𝑛

𝑘𝑘
                             (Eq. S3) 

where ℎ𝜈𝜈 is the photon energy at 1.55 μm, 𝜌𝜌 = 𝑛𝑛, 𝜂𝜂 = 0.2 is the wall-plug efficiency of the 
laser [49], 𝑛𝑛

𝑘𝑘
 is the number of wavelengths used in the MOMZI-PTC. The precision of output 

signals is 𝑁𝑁𝑏𝑏 bits. 𝐶𝐶𝑠𝑠 is the capacitance of the photodetector while 𝑉𝑉𝑟𝑟  is the operating voltage. 
Note that 𝑉𝑉𝑟𝑟 = 0 in some zero-biased energy-efficient photodetectors [50,51], 𝑓𝑓𝑋𝑋 is the baud 
rate of the intput signals. In this work, we choose 𝑓𝑓𝑋𝑋 = 10𝐺𝐺 Baud/s and use a 10 GSPS ADC 
for reading the output. 
 

Table. S3. Energy consumption of a k-point 𝑚𝑚 × 𝑛𝑛 MOMZI-PTC – modeling parameters 
Expression Value 

𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  
~146 fJ/bit [31]  

(0.1 fJ/bit after scaling) [19] 

𝑃𝑃𝑙𝑙 2.5 𝑚𝑚𝑊𝑊 (PDK) 
0 after scaling 

𝐸𝐸𝐷𝐷𝐷𝐷𝑃𝑃 = 𝐹𝐹𝐷𝐷𝑁𝑁𝑏𝑏𝐹𝐹𝑙𝑙/𝐵𝐵𝑟𝑟  [48] 𝐹𝐹𝐷𝐷 = 35 fJ/step  [42] 
𝑁𝑁𝑏𝑏 = 8 𝑏𝑏𝑖𝑖𝑏𝑏 
𝐹𝐹𝑙𝑙/𝐵𝐵𝑟𝑟 = 1 

𝑃𝑃𝑙𝑙𝑟𝑟𝑙𝑙𝑟𝑟𝑟𝑟 =
𝑚𝑚𝑛𝑛
𝑘𝑘
� 𝑛𝑛
𝜌𝜌2

ℎ𝜈𝜈
𝜂𝜂𝑀𝑀𝜂𝜂

max �22𝑀𝑀𝑏𝑏+1, 𝑃𝑃𝑑𝑑𝑉𝑉𝑟𝑟
𝑟𝑟
� 𝑓𝑓𝑚𝑚𝑠𝑠�  [6] 

𝜌𝜌 = 𝑛𝑛 
𝜈𝜈 = 193.5 𝑇𝑇𝑇𝑇𝑇𝑇 

𝜂𝜂 = 0.2 
𝑉𝑉𝑟𝑟 = 0 

𝑃𝑃𝐷𝐷𝐷𝐷𝑃𝑃(10 GSPS) 
  39 mW/channel  [52] 

 0.52 fJ/level [37] (1.3 mW/channel) 
after scaling 
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